## The 300-MHz n.m.r. spectra of melezitose and raffinose in deuterium oxide

MARC ANTEUNIS, ANDRÉ DE BRUYN, AND GEORGES VERHEGGE

Laboratory of NMR Spectroscopy, State University of Ghent, Krijgslaan, 271 (S4bis),

B-9000 Ghent (Belgium)

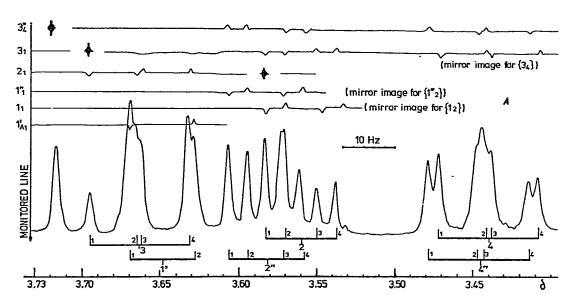
(Received February 24th, 1975; accepted for publication, June 10th, 1975)

 $^{1}$ H-N.m.r. spectral data for trisaccharides have been reported only for the Me<sub>3</sub>Si derivatives of kestose and melezitose<sup>1</sup>, and partially for acetylated kestose<sup>2</sup>. We now report on the 300-MHz spectra of melezitose and raffinose in D<sub>2</sub>O. The spectral assignments were obtained by homo-INDOR experiments with refinement by SIMEQ 16/II simulations. The data are collected in Table I, and in Figs. 1 and 2.

The signal of one of the glycosidic protons in both melezitose and raffinose is found at  $\delta \sim 5.45$ , a value also found for sucrose, and is assigned to H-1 in melezitose and H-1' in raffinose. The second glycosidic proton is located at  $\delta$  5.18 in melezitose and  $\delta$  5.00 in raffinose. For turanose [ $\alpha$ -D-glucopyranosyl-( $1\rightarrow 3$ )- $\beta$ -D-fructofuranose], a partial hydrolysis product of melezitose, although signals for glycosidic protons appeared at  $\delta$  5.22 and 5.31, depending on whether the  $\alpha$  or  $\beta$  form is present, the signals could not be specifically assigned. However, it is likely that the signal at  $\delta$  5.22 represents the  $\beta$  isomer, since H-1" in melezitose resonates at  $\delta$  5.18. The signals for the glycosidic protons in the anomers of melibiose in D<sub>2</sub>O occur<sup>3</sup> at  $\delta$  4.98 and 4.99, *i.e.*, the same value as found for raffinose.

Melezitose (1). The observed shift values for H-2,2",3,3",4,4",5,5" in melezitose

Raffinose


coincide very well with those for the corresponding ring protons in turanose and sucrose<sup>3</sup>, respectively. One exception is the signal for H-3 in sucrose, which occurs 0.2 p.p.m. to higher field (cf. +0.15 p.p.m. for trehalose).

The signals H-3',4' form the AB part of an ABX spin-system (X being H-5'), and the relevant coupling constants were obtained through computer-aided simulations, because classical calculation procedures failed. The values  $J_{3',4'}$  7.6 and  $J_{4',5'}$  8.0 Hz are typically high, indicating a  $^4E(D)$  conformation for the fructofuranosyl moiety, corresponding to that in the Me<sub>3</sub>Si derivative of melezitose. The coupling constants for the pyranose ring protons are typical of the CI(D) conformation 4.5. Although the AB-parts of the two ABX systems formed by H-5,5" and H-6,6" could be extracted from the spectrum, their similar chemical shifts preclude specific assignments. Nevertheless, the values  $J_{A,X} \sim 2$  and  $J_{B,X} \sim 5$  Hz are typical for  $\alpha$ -D-glucopyranosyl fragments with HO-6 unsubstituted 3.4. From the X pattern of the fructofuranosyl fragment, the sum (18 Hz) of the couplings for H-5' is extractable

TABLE I  $^1\text{H-n.m.r.}$  parameters obtained at 300 MHz for melezitose and raffinose in  $D_2\text{O}$  (TSP internal)

| Chemical shifts              | H-1                | H-2(H-1')        |                  | H-3              | H-4              | H-5               | H-6A              | H-6B               |
|------------------------------|--------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|--------------------|
| Melezitose                   |                    |                  |                  |                  |                  |                   |                   |                    |
| Ring A (Glucopyranosyl)      | 5.45               | 3.56             |                  | 3.67             | 3.44             | 3.92              | 3.90<br>3.86      | 3.78<br>3.79       |
| Ring B                       | 3.81               | 3.65             |                  | 4.32             | 4.30             | 3.92              | 3.85              | 3.85               |
| (Fructofuranosyl)<br>Ring C  | 5.18               | 3.58             |                  | 3.75             | 3.45             | 3.92              | 3.86              | 3.79               |
| (Glucopyranosyl)             |                    |                  |                  |                  |                  | <b>5.5</b> _      | 3.90              | 3.78               |
| Raffinose                    |                    |                  |                  |                  |                  |                   |                   |                    |
| Ring A                       | 5.00               | 3.81             |                  | 3.90             | 4.01             | 3.96              | ~3.75             | ~3.75              |
| (Galactopyranosyl)<br>Ring B | 5.43               | 3.58             |                  | 3.75             | 3.55             | ~4.07             | ~4.07             | ~3.71              |
| (Glucopyranosyl)<br>Ring C   | 3,68               | 3.68             |                  | 4.23             | 4.03             | 3.90              | 3.85              | 3.78               |
| (Fructofuranosyl)            | 3.00               | 3.00             |                  | 4.23             | 4.03             | 3.70              | 3.03              | 3.76               |
| Coupling constants           | J <sub>1A,1B</sub> | J <sub>1,2</sub> | J <sub>2,3</sub> | J <sub>3,4</sub> | J <sub>4,5</sub> | J <sub>5,6A</sub> | J <sub>5,6B</sub> | J <sub>6A,6B</sub> |
| Melezitose                   |                    |                  |                  |                  |                  |                   |                   |                    |
| Ring A                       | _a                 | 3.8              | 10.0             | 8.8              | 10.2             | 2.2               | 4.8               | ~12.2              |
| Ring B                       | 12.0               | <u> </u>         | <u>_</u> a       | 7.6              | 8.0              | — <b>b</b>        | — <b>b</b>        | b                  |
| Ring C                       | a                  | 3.8              | 10.0             | 9.0              | 10.0             | 2.2               | 4.8               | ~12.2              |
| Raffinose                    |                    |                  |                  |                  |                  |                   |                   |                    |
| Ring A                       | a                  | 3.8              | 10.0             | 3.0              | 1.0              | <b>b</b>          | b                 | — <b>,</b>         |
| Ring B                       | a                  | 3.6              | 9.6              | 9.4              | 9.8              | ¢                 | c                 | —·c                |
| Ring C                       | b                  | a                | a                | 8.4              | 8.0              | 2.4               | 7.6               | —i1.8              |

Does not occur in this ring. Not to be determined because of degeneracy. Complex ABC system.



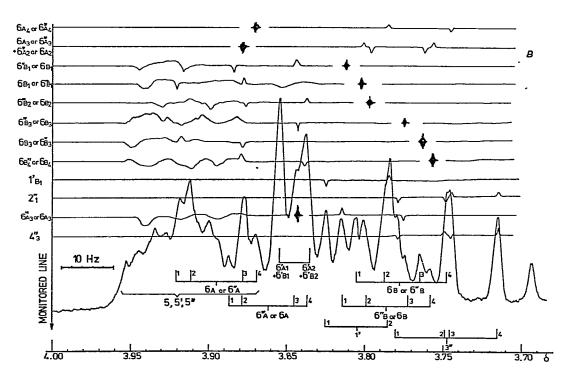
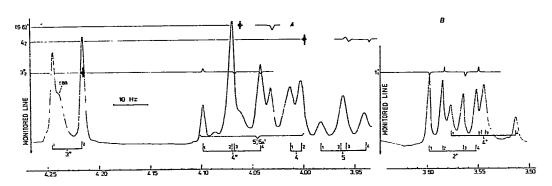




Fig. 1. Extended sweep of melezitose in  $D_2O$  at 300 MHz, and schematic representation of homo-INDOR experiments, with final assignments of protons. A,  $\delta$  3.40-3.70; B,  $\delta$  3.70-4.00.



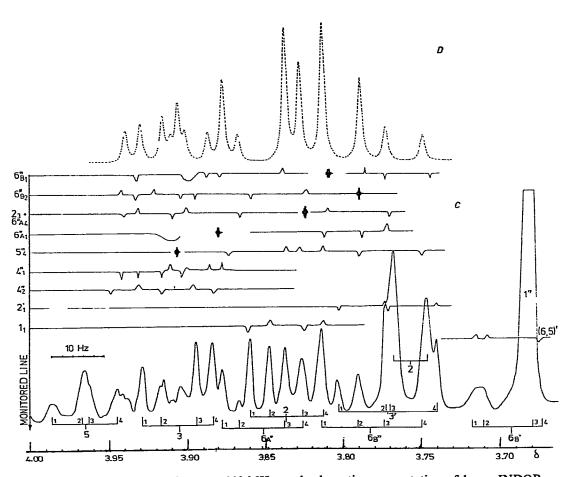



Fig. 2. Extended sweep of raffinose at 300 MHz, and schematic representation of homo-INDOR experiments, with final assignments of protons. A,  $\delta$  3.95–4.25; B,  $\delta$  3.50–3.65; C,  $\delta$  3.70–4.00; D, simulated spectral part (SIMEQ 16/II) for H-5",6A",6B", using the values of Table I. The intensity of the simulated detail (D) is different from the original tracing (C). Line positions are explicitly indicated.

from homo-INDOR experiments, and since  $J_{4',5'}$  is 8.0 Hz, it follows that  $J_{A,X}+J_{B,X}=10.0$  Hz (the AB part is degenerate and appears only as two lines, separated by 5 Hz). This value is too large for a pyranosyl moiety, and thus the AB part belongs to the fructofuranosyl moiety. The value (0.16 p.p.m.) of  $\Delta\delta$ H-1' is unusually large, the normal range being 0.01–0.03 p.p.m., except in turanose<sup>3</sup>, where it is 0.11 p.p.m. in both anomers.

Raffinose (2). Irradiation (INDOR) of H-1 and H-1' enabled identification of the signals for H-2,2', and by repetition of this process the other pyranose ring protons were assigned, and compared with shift data obtained for α-D-gluco-, and α-Dgalacto-pyranosides<sup>4</sup>. The pattern at  $\delta$  4.0-4.1 integrates for four protons (H-4,4",5',6'A; H-5' being assessed by monitoring H-4'). By monitoring H-5', responses were obtained within the same pattern (H-6'A), together with responses in the region  $\delta$  3.7. In view of the strongly coupled nature of the system, no further, more-precise data could be obtained. The  $\delta$  values for H-5' (~4.05) and H-6'B  $(\sim 3.7)$  agree with the corresponding locations in melibiose (a partial hydrolysis product of raffinose); cf. isomaltose  $\delta$  3.97 (H-6A) and 3.77 (H-6B). The value of  $J_{5'.6'B}$  cannot be determined exactly, but it must be ~2 Hz, the same value as found for melibiose<sup>3</sup>. Monitoring the lines at  $\delta \sim 3.9$  gave responses (up or down) at slightly higher field ( $\delta$  3.8), each time with a spacing of 11.5–11.8 Hz, and therefore H-6"A,6"B are located at  $\delta \sim 3.8$ . The calculated coupling values (subspectral analysis of H-5", 6"A, 6"B as an ABM system) are  $J_{5",6"A} \sim 2.4$  and  $J_{5",6"B} \sim 7.6$  Hz. The sum of the outer lines of the pattern for H-5" is again 18 Hz, i.e., the sum of  $J_{4".5"}$ ,  $J_{5".6"A}$ , and  $J_{5".6"B}$ . These values are very close to those observed for the fructofuranosyl moiety of the TMS derivatives of fructose and melezitose<sup>1</sup>. Both protons on C-1", which are located at  $\delta$  3.68, are isochronous, a situation paralleling that in sucrose.

From the values  $J_{3'',4''}$  8.4 and  $J_{4'',5''}$  8.0 Hz, it follows that the conformation of the fructofuranoside is  ${}^4E(D)$ . The remaining couplings for the pyranose rings indicate the expected  ${}^4C_1(D)$  conformation.

## REFERENCES

- 1 D. G. STREEFKERK, Ph.D. Thesis, University of Utrecht (The Netherlands), 1973.
- 2 W. W. BINKLEY, D. HORTON, AND N. S. BHACCA, Carbohyd. Res., 10 (1969) 245-258.
- 3 A. DE BRUYN AND M. ANTEUNIS, Bull. Soc. Chim. Belges, 84 (1975) 407-416.
- 4 A. DE BRUYN, M. ANTEUNIS, AND G. VERHEGGE, J. Acta Ciencia Indica, 1 (1975) 83-88.
- 5 R. U. LEMIEUX AND J. D. STEVENS, Can. J. Chem., 43 (1965) 2059-2070.